
Deep Learning by Example on Biowulf 

Class #4. Generative Adversarial Networks (GANs)

and their application to biological data synthesis

Gennady Denisov, PhD



Examples:

Generating face images BioGANs: GANs for biological image synthesis

What is a GAN?
- A composite network comprising 2 subnetworks: Generator and Discriminator 

- The G produces fake data from scratch/noise;      learns to trick the D

- The D compares fake data against the true data;  learns to expose the G

Intro and goals

Counterfeiter vs police analogy Art forger vs critique analogy

I.Goodfellow et al., Generative Adversarial Nets. NIPS Proc. 2014

D

G

Noise

Features: 
Generative model: the goal is to generate new, synthetic instances of data that can pass for real data

G and D are trained by pitting one against the other – thus the adversarial, i.e. antagonistic, or confrontational



Examples overview

- unsupervised ML

- generative model, functionally similar to VAE

- composite network comprising two subnetworks 

- the two subnetworks are trained interactively, 

by playing a minimax game

- GAN flavors: GAN, DCGAN, WGAN, WGAN-GP,…



Deep Convolutional GAN (DCGAN): a simple example

RNN/1D CNN prototype example from class #2:

Input: a set of training sequences of 0’s and 1’s with binary labels

assigned depending on whether or not 

a certain (unknown) motif is present 

Example: 01011100101

Task: predict the label, or the occurrence of the unknown motif, 

in new, previously unseen sequences.

A toy model of class # 2

Input: a training set of only “good” sequences of 0’s and 1’s,

i.e. all of them contain a certain motif 

Example: 01011001100110011000111

Task: learn what makes all of the training sequences “good”

and then generate new “good” sequences from scratch.

Challenge: no labels; only positive examples.

DCGAN prototype example:

A.Radford et al, arXiv:1511.06434v2 (2016)

Architecture guidelines for stable DCGANs:
- Use convolutions (D) and transposed convolutions (G) instead of pooling layers

- Use BatchNormalization in both the G and the D.

- Avoid Dense/Fully Connected hidden layers

- ReLU activation in G for all layers except for the output and LeakyReLU activation in D.

tensors, units, layers, parameters, hyperparameters, convolution 

# neurons = 1# neurons =  # filters

Z=A(wi·Yi+b)

Conv2D

Output: 

Y =  wi* Xi + b

Input: X



The transposed convolution (a.k.a. deconvolution, 

or fractional-strided convolution)

V.Dumoulin, F.Visin - A guide to convolution arithmetic for deep learning (2018)

convolution, transposed convolution, stride, kernel size, padding

Y
(output)

X
(input)

Conv2D

input size    i = 5
output size o = 2
kernel_size k = 3
strides        s = 2 
padding      p = 0 (‘valid’) 

Conv2D Conv2D

i  = 4
o = 2
k = 3
s = 1
p = 0  

i  = 5
o = 2
k  = 3
s = 1
p = 1(‘same’)

input_size    i’  = 2
output_size o’ = 5
kernel_size  k’ = 3
strides          s’ = 2
padding       p’ = 2  

Y
(output)

X
(input)

Conv2DTranspose

o’ = i’ + (i’-1)*(s’-1) + 2*p’ – k’ + 1)Conv2DTranspose:

‘valid’  padding: p’ = k’ – 1
‘same’ padding: o’ = i’ * s’

i + 2*p = k + s*(o – 1)Conv2D:

‘valid’  padding: p = 0
‘same’ padding: o = round(i / s)



The simple GAN training code: (1) header, 

(2) getting data and (3) defining a model

(1) Header:

- general Python 

imports

- Numpy imports

- Keras library 

imports

(3) Define a model 

- discriminator (D)

motif, discriminator, compile, loss, optimizer

(2) Get data

- motif

- noise_len



The simple GAN training code: (3) defining 

a model (cont.) and (4) running the model

(4) Run the model

- train_on_batch, 

- epoch

- save_weights

Lambda, BatchNormalization, Conv1DTranspose, generator, trainable, 

combined_model, train_on_batch, epoch, save_weights

(3) Define a model 

- Conv1DTranspose

- Lambda

- BatchNormalization

- generator (G) 

- combined model 

(GAN)

GAN = D(G(z))



The GAN optimization objective

Discriminator: log D( x ) + log(1 – D( G(z) )) → max

Generator: log (1 - D(G(z)))   → min

D(Real)   → 1

D(Fake)  → 0

G(Fake)  → 1

min  max  Edata { log D(x) }  +  Enoise { log (1 – D(G(z) ) }
G D

x = data

z = noise

The minimax optimization objective:

Standard neural net

Loss

w1

w2

Real data Fake data

Adversarial neural net

Minimax

objective

wD
wG

(two sets 

of weights)

X.Chen et al, arXiv:1802.01765v1 (2018)



The simple GAN prediction code

Header:

- general Python 

imports

- Numpy imports

…

Run the model

- load_weights

- noise

- predict

load_weights, predict

Get data

Define a model



How to run the simple GAN application

on Biowulf?

Executables

A checkpoint file 

Counts of motifs

produced by 

Generator or randomly



Example 4. BioGANs: GANs for Biological Image Synthesis

A.Osokin e.a. IEEE Int. Conf. on Computer Vision (ICCV), 2017

https://github.com/aosokin/biogans

https://hpc.nih.gov/apps/biogans.html

Fission yeast cells

Bgs4
Alp14

+

Bgs4

Arp3

+

Bgs4

Cki2

+

Bgs4

Mkh1

+

Bgs4

Sid2

+

Bgs4

Twa1

+

Bgs4

biogans_train.py biogans_predict.py biogans_visualize.py

The BioGANs pipeline (reimplemented in Keras from PyTorch):

Data: the Localization Interdependency network (LIN) dataset

Biological task: investigate how the polarity factors interact with one another

Computational task: train a GAN on available data and generate synthetic

images that visualize a synchronized distribution of multiple polarity factors, 

together with growth factor Bgs4 at the same stage of a cell cycle (i.e. the data 

that cannot be produced experimentally)



An overview of the BioGANs 

training code

Getting data

- LIN dataset

Define a (network) model

- models available:

DCGAN, 

DCGAN-separable,

DCGAN-starshaped

Run the model

- GAN algorithms:

(traditional) GAN

WGAN

WGAN-GP

- optimizer: RMSProp

Header

- import statements

- parsing the command

line options

The Keras source code:

biogans_train.py

biogans.predict.py

biogans_visualize.py

options.py, dataloader.py,

models.py, gans.py

https://hpc.nih.gov/apps/biogans.html



BioGANs data: the Localization Interdependency

Network (LIN) dataset

J.Dodgson et al, https://www.biorxiv.org/content/10.1101/116749v1.full

- 2D fluorescence microscopy images of Fission yeast 

cells, each (7 14) x 4 m

- 2-channel images of size is 48 x 80 pixels (1 pixel = 

100 nm)

- red channel = protein Bgs4, localizes in the area 

of active growth

- green channel =  any of 41 different polarity factors

that define a cell geometry

- 170,000 images for 41 polarity factors available in the in

the LIN dataset. 

- the BioGANs application focuses on Bgs4 and 

6 polarity factors Alp14, Arp3, Cki2, Mkh1, Sid2

and Tea1, with total 26,909 images 

Features:

Alp14/Bgs4 Arp3/Bgs4

Cki2/Bgs4 Mkh1/Bgs4

Sid2/Bgs4 Tea1/Bgs4

80

48



The BioGANs DCGAN (i.e. basic) model



BioGANs generator architrectures:  DCGAN, 

DCGAN-separable and DCGAN-starshaped

DCGAN

A.Osokin e.a. IEEE Int. Conf. on Computer Vision (ICCV), 2017   

How to generate multiple green channels given a signal in a red channel?

DCGAN-separable

DCGAN-starshaped



The Wasserstein GAN (WGAN)
M.Arjovsky et al, Wasserstein GAN – arXiv: 1701.07875 (2017)

EMD, a.k.a. Wasserstein loss = minimum amount of work 

to transform one distribution to another

WGAN ideas: 

- get rid of the  layer =>  can no longer use the BCE loss; the D becomes F

- rename F to critic: it will output a score s, not a probability

- use the Earth Mover’s distance (EMD) between the distributions 

of the critic scores PData (s) and PGen(s)  as a new loss function

PGen(s)

s

PData(s)

s

Work = dist * mass (=area of the piece)

dist

Problem with traditional GAN: vanishing gradients 

due to the last/sigmoid layer in the Discriminator:

D(I, w) = (F(I, w))   => w D =  · w F → 0    at saturation

 (x)

x

1

0

Binary cross entropy loss:

Wasserstein loss:

EMD   - E [sData · sGen ]

EMD  → min

forces the two distributions

to have maxima 

at the same locations 



WGAN vs WGAN with gradient penalty (WGAN-GP)

Gulrajani et al., Improved Training of Wasserstein GANs - arXiv:1704.00028v3 (2017)

D(I)

||I||

1

0

(Traditional) GAN:

use sigmoid activation: D(I) =  (F(I))

s =F(I)

||I||
0

WGAN features:

(1) use EMD loss

(2) clip all weights after each epoch

(usually, c = 0.01)

(3) rename Discriminator to Critic

(4) use RMSProp optimizer with lr = 0.00005

How can we limit the growth of F to avoid instability?

WGAN:

clip the weights that are beyond [-c, c ]

Data transformation by one layer:

Z = A(wi·Xi+b)

WGAN-GP:

penalize the gradient (i.e. slope of F)

WGAN-GP loss = EMD +   · || F||

WGAN-GP features:

(1), (3), (4)

(2) penalize the gradient (usually,  = 10)



How to run the BioGANs application on 

Biowulf?
https://hpc.nih.gov/apps/biogans.html



The Root Mean Squared propagation 

(RMSprop) optimizer

w = vector of weights

t = update #

Slides: http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Video: https://goo.gl/XUbIyJ

γ = learning rate ( a hyperparameter)

wJ = gradient of the loss with respect to weights 

Basic gradient descent formula 

for updating weights
wt+1  = wt - γ ·wJ(wt )

wt+1  = wt - ·wJ(wt )

The RMSprop-based formula 

for updating weights

E[…] = running average of the magnitudes 

of recent gradient squares

 = small parameter

How to compute the running average:

 ~ 0.9E[wJw(w )2]t =  · E[wJw(w )2]t-1 + (1 - ) ·wJ(wt )
2

effective γ



Conclusions

1) Intro using a simple example

- simple GAN that synthesizes a sequence containing a certain motif:

Discriminator is the same as the network from class #2

Generator network produces a sequence from random noise

- the Conv2DTranspose (transposed convolution, a.k.a. deconvolution) layer

- the BatchNormalization layer

- the train_on_batch method

2) The BioGANs application:

- DCGAN, DCGAN-separable and DCGAN-starshaped models

- WGAN (Wasserstein GAN ) and the Earth Mover’s distance (EMD)

- WGAN-GP: the Wasserstein GAN with gradient penalty loss

3) Other topics:

- the gradient descent-based optimization algorithm RMSprop


